6,899 research outputs found

    Supersymmetric lepton flavour violation in a linear collider: the role of charginos

    Get PDF
    The occurrence of a significant amount of supersymmetric lepton flavour violation at laboratory energies, through ν~μ−ν~τ\tilde\nu_\mu - \tilde\nu_\tau mixing, has become a realistic possibility in the wake of the super-Kamiokande atmospheric neutrino result. This effect can be observed in an e+e- linear collider with the distinct final state tau+mu+ jets+E_T. We show that the pair production of charginos can make an important contribution to this process and has to be taken into account in addition to that of sneutrinos or charged sleptons. Some case studies are presented with CM energies of 500 and 800 GeV and integrated luminosities of 50, 500 and 1000 fb-1.Comment: 15 pages, latex, including 2 figure

    Dark Matter in the USSM

    Get PDF
    We discuss the neutralino dark matter within classes of extended supersymmetric models, referred to as the USSM, containing one additional SM singlet Higgs plus an extra Z', together with their superpartners the singlino and bino'.Comment: 4 pages, 3 figs. Talk given at LCWS08, Chicago, IL, USA, 11/16-20/200

    Incremental Network Design with Minimum Spanning Trees

    Full text link
    Given an edge-weighted graph G=(V,E)G=(V,E) and a set E0⊂EE_0\subset E, the incremental network design problem with minimum spanning trees asks for a sequence of edges e1′,…,eT′∈E∖E0e'_1,\ldots,e'_T\in E\setminus E_0 minimizing ∑t=1Tw(Xt)\sum_{t=1}^Tw(X_t) where w(Xt)w(X_t) is the weight of a minimum spanning tree XtX_t for the subgraph (V,E0∪{e1′,…,et′})(V,E_0\cup\{e'_1,\ldots,e'_t\}) and T=∣E∖E0∣T=\lvert E\setminus E_0\rvert. We prove that this problem can be solved by a greedy algorithm.Comment: 9 pages, minor revision based on reviewer comment

    A reclaimer scheduling problem arising in coal stockyard management

    Full text link
    We study a number of variants of an abstract scheduling problem inspired by the scheduling of reclaimers in the stockyard of a coal export terminal. We analyze the complexity of each of the variants, providing complexity proofs for some and polynomial algorithms for others. For one, especially interesting variant, we also develop a constant factor approximation algorithm.Comment: 26 page

    Towards Guidelines for Preventing Critical Requirements Engineering Problems

    Get PDF
    Context] Problems in Requirements Engineering (RE) can lead to serious consequences during the software development lifecycle. [Goal] The goal of this paper is to propose empirically-based guidelines that can be used by different types of organisations according to their size (small, medium or large) and process model (agile or plan-driven) to help them in preventing such problems. [Method] We analysed data from a survey on RE problems answered by 228 organisations in 10 different countries. [Results] We identified the most critical RE problems, their causes and mitigation actions, organizing this information by clusters of size and process model. Finally, we analysed the causes and mitigation actions of the critical problems of each cluster to get further insights into how to prevent them. [Conclusions] Based on our results, we suggest preliminary guidelines for preventing critical RE problems in response to context characteristics of the companies.Comment: Proceedings of the 42th Euromicro Conference on Software Engineering and Advanced Applications, 201

    Analytical and Numerical Treatment of the Mott--Hubbard Insulator in Infinite Dimensions

    Full text link
    We calculate the density of states in the half-filled Hubbard model on a Bethe lattice with infinite connectivity. Based on our analytical results to second order in t/Ut/U, we propose a new `Fixed-Energy Exact Diagonalization' scheme for the numerical study of the Dynamical Mean-Field Theory. Corroborated by results from the Random Dispersion Approximation, we find that the gap opens at Uc=4.43±0.05U_{\rm c}=4.43 \pm 0.05. Moreover, the density of states near the gap increases algebraically as a function of frequency with an exponent α=1/2\alpha=1/2 in the insulating phase. We critically examine other analytical and numerical approaches and specify their merits and limitations when applied to the Mott--Hubbard insulator.Comment: 22 pages, 16 figures; minor changes (one reference added, included comparison with Falicov-Kimball model
    • …
    corecore